

# Abstracts

## A Low-Noise K-Ka Band Oscillator Using AlGaAs/GaAs Heterojunction Bipolar Transistors (Short Papers)

---

*M. Madihian and H. Takahashi. "A Low-Noise K-Ka Band Oscillator Using AlGaAs/GaAs Heterojunction Bipolar Transistors (Short Papers)." 1991 Transactions on Microwave Theory and Techniques 39.1 (Jan. 1991 [T-MTT]): 133-136.*

The design considerations, fabrication process, and performance of the first K -- Ku band oscillator implemented using a self-aligned AlGaAs/GaAs heterojunction bipolar transistor (HBT) are described. A large-signal time-domain based design approach has been used which applies a SPICE-F simulator to optimization of the oscillator circuit parameters for maximum output power. The oscillator employs a  $2 \times 10 \mu\text{m}^2$  emitter AlGaAs/GaAs HBT fabricated using a pattern inversion technology. The HBT has a base current  $1/\text{f}$  noise power density lower than  $1 \times 10^{-20} \text{ A}^2/\text{Hz}$  at 1 kHz, and lower than  $1 \times 10^{-22} \text{ A}^2/\text{Hz}$  at 100 kHz, for a collector current of 1 mA. The oscillator, which is composed of only low-Q microstrip transmission lines, has a phase noise of -80 dBc/Hz at 100 kHz off carrier when operated at 26.6 GHz. These results indicate the applicability of the HBT's to low-phase-noise monolithic oscillators at microwave and millimeter-wave frequencies, where both Si bipolar transistors and GaAs FET's are absent.

[Return to main document.](#)